Numerical Solution of Anisotropic Diffusion with Localized Source Using Euler Scheme and Finite Element Method

Authors

  • M. Ziaul Arif Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember, Jl. Kalimantan No. 37 Kampus Tegalboto, Jember, Jawa Timur, 68121, Indonesia
  • Millatuz Zahroh Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember, Jl. Kalimantan No. 37 Kampus Tegalboto, Jember, Jawa Timur, 68121, Indonesia
  • Sailah Ar Rizka Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember, Jl. Kalimantan No. 37 Kampus Tegalboto, Jember, Jawa Timur, 68121, Indonesia

DOI:

https://doi.org/10.19184/bst.v13i2.53711

Keywords:

Anisotropic Diffusion, Finite Element Method, Implicit and Explicit Euler Schemes

Abstract

This study investigates the numerical modeling of two-dimensional anisotropic diffusion processes involving a spatially localized and temporally limited energy or thermal source. The governing model is formulated as a parabolic partial differential equation, discretized in space using the Finite Element Method (FEM) with linear triangular elements, and in time using both explicit and implicit Euler integration schemes. To ensure spatial accuracy, a dense mesh configuration is employed, which has been shown to produce smooth and representative solution distributions. Simulation results demonstrate that the implicit Euler method exhibits superior numerical stability across various time step sizes, whereas the explicit method requires significantly smaller time steps to remain stable. Analysis of the transient regime reveals that the numerical solution gradually converges toward a steady-state configuration once the source is deactivated. These findings confirm that the combination of FEM with implicit time integration and dense meshing is effective in capturing the spatiotemporal dynamics of anisotropic diffusion processes with localized sources, a phenomenon relevant to thermal analysis, anisotropic materials, and environmental modeling.

Downloads

Download data is not yet available.

References

[1]. Evans, L. C. Partial Differential Equations (Vol. 19). American Mathematical Society, 2022.

[2]. Asoltanei, A. M., Iacob-Tudose, E. T., Secula, M. S., & Mamaliga, I. Mathematical Models for Estimating Diffusion Coefficients in Concentrated Polymer Solutions from Experimental Data. Processes, 12(6), 1266, 2024.

[3]. Chen, L., Painter, K., Surulescu, C., & Zhigun, A. Mathematical Models for Cell Migration: A Non-Local Perspective. Philosophical Transactions of The Royal Society B, 375(1807), 20190379. 2020

[4]. Pandey, P., Kumar, S., Gómez-Aguilar, J. F., & Baleanu, D. An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media. Chinese Journal of Physics, 68, 483-492, 2020.

[5]. Gawas, A. S., & Patil, D. V. Natural Convection Heat Transfer with Anisotropic Thermal Diffusion for Tilted Two-Dimensional Cavities. International Journal of Heat and Mass Transfer, 194, 123000, 2022.

[6]. Liu, X., Shi, J., Yang, G., Zhou, J., Wang, C., Teng, J., ... & Xie, Z. A Diffusion Anisotropy Descriptor Links Morphology Effects Of H-Zsm-5 Zeolites To Their Catalytic Cracking Performance. Communications Chemistry, 4(1), 107, 2021.

[7]. Khaustov, A., & Redina, M. Anisotropy of The Polyarenes Distribution in The Urban Soil-Plant Systems Under the Conditions of Transport Pollution. Applied Geochemistry, 143, 105383, 2022.

[8]. Leveque, R. J. Finite Difference Methods for Differential Equations. Draft Version for Use in Amath, 585(6), 112. 1998.

[9]. Szabó, B., & Babuška, I. Finite Element Analysis: Method, Verification and Validation, 2021.

[10]. Butcher, J. C. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, 2016.

[11]. Özişik, M. N., Orlande, H. R., Colaço, M. J., & Cotta, R. M. Finite Difference Methods in Heat Transfer. Crc Press, 2017.

[12]. Majchrzak, E., & Mochnacki, B. Implicit Scheme of The Finite Difference Method For The Second-Order Dual Phase Lag Equation. Journal Of Theoretical and Applied Mechanics, 56(2), 393-402, 2018.

[13]. Arif, M. Z., Lehtikangas, O., Seppänen, A., Kolehmainen, V., & Vauhkonen, M. Joint Reconstruction of Conductivity and Velocity in Two-Phase Flows Using Electromagnetic Flow Tomography and Electrical Tomography: A Simulation Study. Ieee Transactions On Instrumentation and Measurement, 70, 1-17, 2021.

[14]. Okereke, M., & Keates, S. Finite Element Applications. A Practical Guide to The Fema Process. Textbook. Publisher: Springer, 2018.

Downloads

Published

2025-06-23

Issue

Section

General